Un árbol de decisión es un modelo de predicción utilizado en el ámbito de la inteligencia artificial. Dada una base de datos se construyen diagramas de construcciones lógicas, muy similares a los sistemas de predicción basados en reglas, que sirven para representar y categorizar una serie de condiciones que ocurren de forma sucesiva, para la resolución de un problema.
Un árbol de decisión tiene unas entradas las cuales pueden ser un objeto o una situación descrita por medio de un conjunto de atributos y a partir de esto devuelve una respuesta la cual en últimas es una decisión que es tomada a partir de las entradas. Los valores que pueden tomar las entradas y las salidas pueden ser valores discretos o continuos. Se utilizan más los valores discretos por simplicidad, cuando se utilizan valores discretos en las funciones de una aplicación se denomina clasificación y cuando se utilizan los continuos se denomina regresión.
Un árbol de decisión lleva a cabo un test a medida que este se recorre hacia las hojas para alcanzar así una decisión. El árbol de decisión suele contener nodos internos, nodos de probabilidad, nodos hojas y arcos. Un nodo interno contiene un test sobre algún valor de una de las propiedades. Un nodo de probabilidad indica que debe ocurrir un evento aleatorio de acuerdo a la naturaleza del problema, este tipo de nodos es redondo, los demás son cuadrados. Un nodo hoja representa el valor que devolverá el árbol de decisión y finalmente las ramas brindan los posibles caminos que se tienen de acuerdo a la decisión tomada.
De forma más concreta, refiriéndonos al ámbito empresarial, podemos decir que los árboles de decisión son diagramas de decisiones secuenciales nos muestran sus posibles resultados. Éstos ayudan a las empresas a determinar cuales son sus opciones al mostrarles las distintas decisiones y sus resultados. La opción que evita una pérdida o produce un beneficio extra tiene un valor. La habilidad de crear un opción, por lo tanto, tiene un valor que puede ser comprado o vendido.
Un árbol de decisión tiene unas entradas las cuales pueden ser un objeto o una situación descrita por medio de un conjunto de atributos y a partir de esto devuelve una respuesta la cual en últimas es una decisión que es tomada a partir de las entradas. Los valores que pueden tomar las entradas y las salidas pueden ser valores discretos o continuos. Se utilizan más los valores discretos por simplicidad, cuando se utilizan valores discretos en las funciones de una aplicación se denomina clasificación y cuando se utilizan los continuos se denomina regresión.
Un árbol de decisión lleva a cabo un test a medida que este se recorre hacia las hojas para alcanzar así una decisión. El árbol de decisión suele contener nodos internos, nodos de probabilidad, nodos hojas y arcos. Un nodo interno contiene un test sobre algún valor de una de las propiedades. Un nodo de probabilidad indica que debe ocurrir un evento aleatorio de acuerdo a la naturaleza del problema, este tipo de nodos es redondo, los demás son cuadrados. Un nodo hoja representa el valor que devolverá el árbol de decisión y finalmente las ramas brindan los posibles caminos que se tienen de acuerdo a la decisión tomada.
De forma más concreta, refiriéndonos al ámbito empresarial, podemos decir que los árboles de decisión son diagramas de decisiones secuenciales nos muestran sus posibles resultados. Éstos ayudan a las empresas a determinar cuales son sus opciones al mostrarles las distintas decisiones y sus resultados. La opción que evita una pérdida o produce un beneficio extra tiene un valor. La habilidad de crear un opción, por lo tanto, tiene un valor que puede ser comprado o vendido.
No hay comentarios:
Publicar un comentario